Gallium Nitride (GaN) Technology Overview
For over three decades, power management efficiency and cost showed steady improvement as innovations in power MOSFET structures, technology, and circuit topologies paced the growing need for electrical power in our daily lives. In the new millennium, however, the rate of improvement slowed as the silicon power MOSFET asymptotically approached its theoretical bounds.
Download this whitepaper to learn more.
Read More
By submitting this form you agree to Efficient Power Conversion Corporation (EPC) contacting you with marketing-related emails or by telephone. You may unsubscribe at any time. Efficient Power Conversion Corporation (EPC) web sites and communications are subject to their Privacy Notice.
By requesting this resource you agree to our terms of use. All data is protected by our Privacy Notice. If you have any further questions please email dataprotection@techpublishhub.com
Related Categories: Power, Power semiconductors, Semiconductors
More resources from Efficient Power Conversion Corporation (EPC)
Improve DC-DC Flyback Converter Efficiency Using eGaN FETs
DC-DC converter designers can achieve low cost at low power densities by using flyback converters and enhancement mode gallium nitride transistors....
Benchmark DC-DC Conversion Efficiency with eGaN FET-Based Buck Converters
For applications requiring high power density and high power, but not requiring electrical isolation, the buck converter has been the workhorse top...
Impact of Parasitics on Performance
With improvements in switching figure of merit provided by eGaN FETs, the packaging and PCB layout parasitics are critical to high performance.
